A Rough – Neuro Model for Classifying Opponent Behavior in Real Time Strategy Games
نویسنده
چکیده
Real Time strategy games offer an environment where game AI is known to conduct actuality. One feature of realistic behavior in game AI is the ability to recognize the strategy of the opponent player. This is known as opponent modeling. In this paper, a classification Rough-Neuro hybrid model of the RTS opponent player behavior process is proposed. As a mean to achieve better game performance, reduction of the agent decision space and better high-level winning of real-time strategy games. The Rough-Neuro methodology allows the classification model to some extent simulate opponent behavior in playing RTS games. The methodology incorporates a two-stage hybrid mechanism. Rough sets for reduction of relevant attributes and artificial neural networks for classification opponent behavior during game playing. The proposed hybrid approach has been tested on an open source 3D RTS game called Glest. From our results we can deduce that the tactic may be successfully used for foretelling the demeanor of contender in the Glest game.
منابع مشابه
Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملOpponent Modeling in Real-Time Strategy Games
Real-time strategy games present an environment in which game AI is expected to behave realistically. One feature of realistic behaviour in game AI is the ability to recognise the strategy of the opponent player. This is known as opponent modeling. In this paper, we propose an approach of opponent modeling based on hierarchically structured models. The top-level of the hierarchy can classify th...
متن کاملOpponent Provocation and Behavior Classification: A Machine Learning Approach
Opponent Modeling is one of the most attractive and practical arenas in Multi Agent System (MAS) for predicting and identifying the future behaviors of opponent. This paper introduces a novel approach using rule based expert system towards opponent modeling in RoboCup Soccer Coach Simulation. In this scene, an autonomous coach agent is able to identify the patterns of the opponent by analyzing ...
متن کاملAnalysis of Multi-Robot Play Effectiveness and of Distributed Incidental Play Recognition
Distributed play-based approaches have been proposed as an effective means of switching strategies during the course of timed, zero-sum games, such as robot soccer. In this paper, we empirically show that different plays have a significant effect on opponent performance in real robot soccer games. We also consider the problem of distributed play recognition: classifying the strategy being playe...
متن کاملIncreasing Replayability with Deliberative and Reactive Planning
Opponent behavior in today's computer games is often the result of a static set of Artificial Intelligence (AI) behaviors or a fixed AI script. While this ensures that the behavior is reasonably intelligent, it also results in very predictable behavior. This can have an impact on the replayability of entertainment-based games and the educational value of training-based games. This paper propose...
متن کامل